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Ketone Derivative as Carrier

H. Korkmaz Alpoguz,! Shahabuddin Memon,’
Mustafa Ersoz,>* and Mustafa Yilmaz>

"Department of Chemistry, Pamukkale University, Kampus,
Denizli, Turkey

2Department of Chemistry, Selcuk University, Kampus,
Konya, Turkey

ABSTRACT

In this article, calix[4]arene ketone derivative was used as a carrier to
transport Hg*" ions from an aqueous solution into an aqueous receiving
solution. The kinetic parameters (ki, ko, R, tmaxs Ja s Ja ) were
investigated with influence of temperature, the solvent, and stirring rate
and analyzed in the formation of two consecutive, irreversible first order
reactions. The membrane entrance rate, k;, and the membrane exit rate,
k,, constants were increased with temperature and stirring rate and found

to be dependent on the solvent type in the order CH,Cl, > CHCl; > CCl,.
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The activation energy was obtained as 5.28 kcal /mol from the slope of the
Arrhenius plot for the case of maximum membrane exit flux, J;**. This
value indicates that the process is controlled by species diffusion.

Key Words:  Liquid membrane; Transport kinetics; Temperature effects;
Diffusional rate-determining step; Calixarenes.

INTRODUCTION

Liquid membranes play an attractive role in separation science.''! Their
efficiency and economic advantages designate them as the optimal solution of
some important problems, such as precious metal recovery particularly for
permselective applications, toxic product (metals, organic molecules)
elimination from wastewaters, etc. Of the three types of liquid membranes,
namely, bulk (BLM), supported (SLM), and emulsion (ELM), SLM and ELM
have more potential for use in industrial applications, whereas BLM is useful
on a laboratory scale to evaluate new means of improving the efficiency of
separation processes.'?! Although many carriers on the transport of alkali and
alkaline earth metal ions through the BLM have been reported so far,!*~>!
relatively few carriers have been reported for the selective and efficient
transport of transition or heavy-metal ions./®"® Calix[n]arenes have been
made in the design and synthesis of artificial receptors for cations, anions, and
neutral organic molecules.”~'*! Various applications of calixarenes refer to
purification, chromatography, catalysis, enzyme mimics, ion selective
electrodes, phase transfer, transport across membranes, ion channels, and
self-assembling monolayers.''>~ '8!

As known, the assay of mercury and its compounds has been of special
interest because of their widespread agricultural and industrial use and also
their hazardous effects on human health."'®! Particularly selective removal of
Hg”" ions is interesting from environmental remediation. In spite of the great
potential of membrane transport for selective removal, a few studies for
removal of Hg>" have been reported.'?’~2°! From this point of view, a variety
of calix[4]arene derivatives were synthesized for selective extraction of Hg*"
ions from the waste effluents.!?’ ="

We report here an investigation of co-transport of Hg>" ion through liquid
membranes. Diacetonyloxy-5,11,17,23-tetra-fert-butyl-26,28-dihydroxycalix
[4]arene is the carrier ligand (as presented in Fig. 1), which was synthesized
according to method.'*”! The kinetics of Hg?" ion transport was analyzed
at different temperatures as well as at different stirring rates in various
solvents.
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R = tert-butyl; R ;= CH,COCH;,R,=H

Figure 1. The structure of ligand used as carrier.

EXPERIMENTAL
Materials

The chemical reagents were analytical grade, mercury(Il) nitrate
dichloromethane, chloroform, CCly, and picric acid obtained from Merck
Co. (Darmstadt, Germany). Mercury(Il) picrate solution was prepared by the
addition of a 1 x 10~ > M mercury(II) nitrate to a 2.5 x 10~ > M aqueous picric
acid solution and shaken at 25°C for 1hr. The aqueous solutions were
prepared using demineralized water.

Kinetic Procedure

Co-transport experiments were preformed using a thermostated (Grand
mark, model W14, Grants Instruments, Cambridge, England) apparatus.
Transport experiments were carried out in a conventional U-type cell. An
organic solution (20 mL) containing the carrier was placed in the bottom of the
cell and two aqueous solutions (donor and acceptor, 10 mL each) were
carefully added on top of the organic solution. Both surface areas were
2.5cm? The organic phase was magnetically stirred at variable speeds
(Chiltern mark, model HS 31).

The procedure for the preparation of samples was given in the
literature; " 1 x 107*M Hg(NO3), was dissolved in 2.5 x 107> M solution
of picric acid in order to convert all picric acid molecules to Hg**-picrate
species, and this sample was used as the donor phase. The membrane phase
consists of the carrier (10_3M), which was dissolved in the organic solution.

Copyright © Marcel Dekker, Inc. All rights reserved.
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The acceptor phase consisted of doubly distilled water. Preliminary experi-
ments with only picric acid in the source phase were performed to control the
transport of picric acid using identical conditions, indicating no picric acid
transport. Samples from both water phases (acceptor and donor phases) were
taken at various time intervals. The picrate ion concentration in both phases
was determined by a spectrophotometric (Shimadzu 160 A Model Spectro-
fotometer) method.”?! The concentration of Hg*" was also determined to
confirm the carried-through liquid membrane, by atomic absorption spectro-
photometer (AAS); nearly the same results were observed as before. Each
experimental result reported is the arithmetic mean of two independent
measurements.

RESULTS AND DISCUSSIONS
In our previous reports,'>>! the selective transport of Hg>" ions from
aqueous phase was carried out by using nitrile derivatives of calix[4]arenes as
the carrier. In this work, the transport of Hg*" ion by calix[4]arene ketone
derivative in the BLM was studied and the kinetic behavior of the transport
process as a function of temperature, stirring rate, and solvents was
investigated. A simple theoretical approach was used to obtain the consecutive
kinetic equations for a BLM transport system, which was discussed in
details.[*52

The variation of picrate ion concentration with time was determined for
both donor (Cy) and acceptor phases (C,). If corresponding change of picrate
ion concentration in the membrane phase was not directly determined, it was
calculated from the material balance between the phases. In general, the
dimensionless reduced concentrations are useful for practical reason, thus they
are represented as follows:
Cd R Cm Ca

= — = — R =
Cd() " Cdo ¢ CdO

Rq (1)
where Cy is the initial Hg2+ concentration in the donor phase, while Cq4, Cy,,
and C, represent the Hg*" concentration in donor, membrane, and acceptor
phases, respectively. With respect to the reduced concentrations, the material
balance can be expressed as Ry + R, + R, = 1. From this expression, the
kinetic behavior of the consecutive irreversible first order reactions are
described in the following relation:

Co—5 Cn =255 €, ®)

where k; and k, are the apparent membrane entrance and exit rate constants,
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respectively. The kinetic scheme for consecutive reaction systems was
described in detail in previous works.!?32%-33

Here, the transport mechanism is a co-transport (ion-pair mediated
diffusion) process, in which co-transport of Hg*" ion with the carrier was
studied over a temperature range of 293—-308 K and at different stirring rates
in the range of 500—800 rpm. The kinetic parameters of k; and k, from the
obtained data were calculated by fitting equations as described in the
1iterature,[25’26’33] and the data for CHCl; solvent are presented in Tables 1
and 2. Time variation of the reduced concentration of Hg>" ion for CHCl,
solvent at 500 rpm and 25°C is illustrated in Fig. 2, in which R4 decreases
exponentially accompanied by a simultaneous increase of R,, whereas R,
presents as maximum at intermediate times. The maximum R, values for all
experimental conditions studied were found to be between 0.3 and 0.7, as
given in Tables 1—4. This clearly indicates that the membrane phase plays a
role in the transport. The other important factor is that the 7., values were
also decreased upon increasing the temperature and the stirring rates.

The final value of R4 after 600 min of reaction time is expressed with Rin,
Then, permeability degree (R, = 1-R%™) values can be obtained and are given
in Table 3 for different temperatures. It should be emphasized that R, must be
as high as possible in order to have a correct analysis. The case R, = 1 shows
that the numerical analysis which applies to experimental values with very

Table 1. The kinetic parameters of Hg®' transport using carrier at different
temperatures (stirring rate is 500 rpm; solvent is CHCls).

Temperature  k; x 10° &k, x 10° Fimax JIC 10t gmax i 10*
(K) (min™"  (min™YH)  R®™  (min) (min~ 1Y) (min~ 1)
293 2.15 1.07 0.51  664.40 —-5.16 5.16
298 2.16 1.59 042 53750 —6.05 6.05
303 2.17 1.86 0.40  497.63 —7.37 7.37
308 2.18 2.10 037  468.97 —17.86 7.86

Table 2. The kinetic parameters of Hg”>" transport using the carrier at different
stirring rates (7 = 298 K;; solvent is CHCly).

Stirring rate ~ k; x 10° Kk x 103 JRa 10t gmax e 10%
(rpm) (min™YH  (min™YH  REX ¢ (min)  (min"Y) (min~ 1)
500 2.16 1.59 0.42 537.50 —6.05 6.05
650 2.18 2.63 0.33 417.01 —8.78 8.78
800 2.19 2.94 0.32 392.59 -9.27 9.27
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Figure 2. The changes of reduced concentrations of Hg®" ion with time in
co-transport through liquid membrane (7= 298 + 0.1 K, solvent is CHCl;).

small standard errors. As can be seen from Table 3, greater value for R}, (0.99)
was obtained. This is verified by a good correlation between experimental and

theoretical data.

The effect of temperature on the co-transport of Hg”" is presented in
Fig. 3. It is seen that the reduced concentration of Hg>" in the acceptor phase

Table 3. Distribution of Hg>" ion in donor, membrane, and acceptor phases
in co-transport (¢ = 600 min; solvent is CHClj; stirring rate is 500 rpm).

T (K) Ry R R, R,

293 0.17 0.37 0.46 0.83
298 0.03 0.34 0.63 0.97
303 0.02 0.31 0.67 0.98
308 0.01 0.22 0.77 0.99
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MARCEL DEKKER, INcC. ﬂ
270 Madison Avenue, New York, New York 10016 5



10: 10 25 January 2011

Downl oaded At:

ORDER REPRINTS

Transport Kinetics of Hg>* 805

Table 4. The kinetic parameters for Hg>™ transport using carrier (1) when different
solvents are used (7 = 298 K stirring rate is 500 rpm).

k x 10° k& x 10° fmax JU 10t g i 107
Solvent (min”Y)  (min Y Ry (min) (min~ Y (min~ 1)
CH,Cl, 2.17 1.92 0.39 489.61 —-7.49 7.49
CHCl, 2.16 1.59 0.42 537.50 —6.05 6.05
CCly 2.09 0.44 0.66 944.33 —2.90 2.90

with time increases exponentially, particularly at higher temperature. In other
words, transport efficiency was higher at higher temperatures and higher
stirring rates. Comparing the experimental results for R, values with the
theoretical curves, the numeric analysis was solved by using of nonlinear
curve-fitting program, as shown by the dashed lines in Fig. 3. It is seen from
Fig. 3 that there is good agreement between the theoretical curves and the
experimental points. As a result, when temperature and stirring rate were

203 K
298K
303K
308 K

4rne

0 100 200 300 400 500 600

t (min)

Figure 3. The changes of reduced concentrations of Hg" in the acceptor phase with
time during co-transport through liquid membrane using of calix[4]arene ketone
derivative at different temperatures at a stirring rate of 500 rpm. (The symbols represent
the experimental points, the lines are obtained from the curve-fitting program.)
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increased, Ry increased somewhat, while #,,,, decreased. This suggests that
the Hg?" ions are rapidly complexed with the ligand carrier. Moreover, the
kinetic parameters, membrane entrance (k) and exit (k) rate constants, also
increase with increasing temperature as well as stirring rate. It was pointed out
that the temperature and stirring effects are mainly exerted on the maximum
complexation and decomplexation between Hg* " picrate and ligand carrier at
the aqueous—organic interfaces.!*!

The activation energy of co-transport of Hg?" in the BLM systems was
obtained by plotting the maximum membrane exit flux (J;**) values vs. (1/7)
at 500 rpm, by using Eq. (3). The activation energy of Hg>* was calculated as
5.28kcal/mol from the slope of the curve, as presented in Fig. 4.

E, (1
In(J/)=In(A) —— | = 3
n(W)=In@) -2 <T> 3)

As known, activation energy values are quite low for diffusion-controlled
processes, whose rate constants are strongly affected by temperature.
Comparing the E, values of diffusion-controlled processes and chemically

7.0 -
°
o °
6.5
°
6.0 -
[ T T 1
3.2 33 3.4 3.5

UT10° K"

Figure 4. Arrhenius plot of Hg*" ion transport at JI",
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controlled processes, the values of diffusion-controlled processes are always
lower. It was pointed out that the activation energies of diffusion-controlled
processes are lower than 10 kcal/ mol.** This states that the transport of Hg?*
ion is a diffusion-controlled process.

The present work was to investigate the physicochemical approach to
co-transport of Hg>" ion transport through a liquid membrane containing
calix[4]arene ketone derivative carrier. Therefore, the effect of solvents on the
transport process was studied under the same conditions, and the results
obtained with CH,Cl, and CCl, are presented in Table 4, along with analogous
results for CHCls. It has been observed that the membrane entrance and exit
rate constants are found to vary in the order CH,Cl, > CHCI; > CCly, and the
variation of R, values is illustrated in Fig. 5. This shows that the R, values are
strongly affected by the membrane solvent system, and the higher transport
efficiency was observed with CH,Cl, solvent. From this observation, the
results are consistent with the literature,””! in which the efficiency of

10 - ® CHCl
m CHCL
A cCl
0.8 4
0.6 4
o
0.4 4
0.2 4
0.0 -

0 100 200 300 400 500 600

t (min)

Figure 5. The changes of reduced concentrations of Hg*" in the acceptor phase with
time during co-transport through liquid membrane using of calix[4]arene ketone
derivative in different solvents at a stirring rate of 500 rpm. (The symbols represent the
experimental points, the lines are obtained from the curve-fitting program.)
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dichloromethane with respect to the R, values was higher than of CHCl; and
CCly, because their viscosity values were in the reverse order. Thus, we
demonstrated that the characteristics of the membrane solvent are one of the
main factors in establishing transport efficiency.
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